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ABSTRACT. In this paper we study the graphs which are direct product of a simple graph
G with the graphs obtained by the complete graph Kk adding a loop to each vertex; thus
these graphs turn out to be a generalization of the double graphs.

1. Introduction

Let G be a finite simple graph, i.e. a graph without loops and multiple edges. In [1]
it is introduced and studied the graph, said double of G and denoted D(G), obtained by
taking two copies of G and joining every vertex v in one component to every vertex w′ in
the other component corresponding to a vertex w adjacent to v in the first component. The
above construction can be generalized in the following way.

As usual V (G) and E(G) denote the set of vertices and edges of G, respectively,
and adj denote the adjacency relation of G . For all definitions not given here see
[2, 3, 4, 5, 6].

The direct product G×H of two graphs G and H is the graph with V (G×H) =
V (G) × V (H) and with adjacency defined by (v1, w1) adj (v2, w2) if and only if
v1 adj v2 in G and w1 adj w2 in H .[5]

The total graph Tn on n vertices is the graph associated to the total relation (where
every vertex is adjacent to every vertex). It can be obtained by the complete graph Kn

adding a loop to every vertex. In [5] it is denoted by Ks
n .

We define the k- fold ofG as the graph D[k](G) = G×Tk; clearly for k = 2 we obtain
the double graphs.

Since the direct product of a simple graph with any graph is always a simple graph, it
follows that the k-fold of a simple graph is still a simple graph.

In D[k](G) we have (v, a) adj (w, b) if and only if v adj w in G . Then, if
V (Tk) = {0, 1, . . . , k − 1} , we have that Gi = {(v, i) : v ∈ V (G)} , 0 ≤ i ≤ k − 1,
are k subgraphs of D[k](G) isomorphic to G such that G0∩G1∩ · · ·∩Gk−1 = ∅ and
G0 ∪ G1 ∪ · · · ∪ Gk−1 is a spanning subgraph of D[k](G) . Moreover we have an edge
between (v, i) and (w, j) and similarly we have an edge between (v, j) and (w, i) ,
where 0 ≤ i, j ≤ k − 1, whenever v adj w in G . We will call {G0, G1, . . . , Gk−1}
the canonical decomposition of D[k](G) .

The lexicographic product (or composition) of two graphs G and H is the graph G◦
H with V (G)×V (H) as vertex set and with adjacency defined by (v1, w1) adj (v2, w2)
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if and only if v1 = v2 and w1 adj w2 in H or v1 adj v2 in G . The graph G ◦H
can be obtained from G replacing each vertex v of G by a copy Hv of H and
joining every vertex of Hv with every vertex of Hw whenever v and w are adjacent
in G [5, p. 185].

Lemma 1. For any graph G we have G×Tn ' G ◦Nn, where Nn is the graph on n
vertices without edges.

Proof. For simplicity consider Tn and Nn on the same vertex set. Then the function
f : G× Tn → G ◦Nn , defined by f(v, k) = (v, k) for every (v, k) ∈ V (G× Tn) , is a
graph isomorphism. Indeed, since Nn has no edges, we have that (v, h) adj (w, k) in
G ◦Nn if and only if v adj w in G . �

2. Some basic properties of k-fold graphs

In this section we will review some elementary properties of the k-fold graphs. We
will write D2[G] for the double of the double of G . More generally Dk(G) is obtained
by multiplying G by T2 k times, t.i. Dk(G) = G× T2k and D[k](G) 6= Dk(G)

In particular D[k](G) ' Dm(G) when k = 2m. In the following proposition the
converse statement is proved.

Proposition 2. Let k and m positive integers. Then D[k](G) ' Dm(G) if and only if
k = 2m.

Proof. We prove the ”only if” part. Let n be the number of vertices of G. The assump-
tion that D[k](G) ' Dm(G) implies | V (D[k](G)) |=| V (Dm(G)) |. Thus, because
| V (D[k](G)) |= kn and | V (Dm(G)) |= 2mn, the result follows. �

Recall the following theorem.

Theorem 3 ([5, p. 190]). If G ◦H ' G′ ◦H ′ and |V (H)| = |V (H ′)|, then H ' H ′
and G ' G′ .

An immediate consequence of the theorem is the following

Theorem 4. Two graphs G1 and G2 are isomorphic if and only if D[k](G1) and
D[k](G2) are isomorphic.

Proof. By Lemma 1 D[k](G1) = G1 ◦ Nk and D[k](G2) = G2 ◦ Nk; then the claim
holds. �

Proposition 5. The k-fold graph D[k](G) of a graph G on n vertices contains at least
(2n − 2)(k − 1)k + k subgraphs isomorphic to G itself.

Proof. Let {G0, G1, . . . , Gk−1} be the canonical decomposition of D[k](G) . Let S0

be any subset of V (G0) and C0 the complementary set of S0 with respect to V (G0);
moreover let Si , where 1 ≤ i ≤ k−1, be subsets of V (Gi) and Ci their complementary
sets with respect to V (Gi) . Then the subsets Si ∪ Cj , where 1 ≤ i, j ≤ k − 1, i 6= j,
are isomorphic to G. The number of subsets S0 is 2n− 2, because we exclude the cases of
S0 = ∅ and S0 = G0; finally we have to add the k subsets G0, G1, . . . , Gk−1. �

Proposition 6. For any graph G, G is bipartite if and only if D[k](G) is bipartite.
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Proof. Let {G0, G1, . . . , Gk−1} be the canonical decomposition of D[k](G) . If G
is bipartite then also Gj , where 0 ≤ j ≤ k − 1, are bipartite. Let {V,W} be the
partite sets of G and {Vj ,Wj} , be the corresponding partite sets of Gj . Every edge of
D[k](G) has one extreme in ∪k−1

j=0Vj , and the other in ∪k−1
j=oWj and hence also D[k](G)

is bipartite.
Conversely, if D[k](G) is bipartite then it does not contain odd cycles. Hence also the

subgraph G0 ' G does not contain odd cycles and then it is bipartite. �

A vertex cut of a graph G is a subset S of V (G) such that G \ S is disconnected.
The connectivity κ(G) of G is the smallest size of a vertex cut of G . A point of
articulation (resp. bridge) is a vertex (resp. edge) whose removal augment the number
of connected components. A block is a connected graph without articulation points. In
the following proposition we present some properties of the k-fold graphs, whose proof is
perfectly similar to the proof in the case of the double graphs [1].

Proposition 7. For any graph G 6= K1 the following properties hold.
(1) G is connected if and only if D[k](G) is connected.
(2) If G is connected, then every pair of vertices of D[k](G) belongs to a cycle.
(3) Every edge of D[k](G) belongs to a 4-cycle.
(4) In a k-fold graph there are neither bridges nor articulation points.
(5) If G is connected, then D[k](G) is a block.
(6) The connectivity of D[k](G) is κ(D[k](G)) = 2k κ(G) .

A graph G is Hamiltonian if it has a spanning cycle.

Proposition 8. If a graph G is Hamiltonian, then also D[k](G) is Hamiltonian.

Proof. Let {G0, G1, . . . , Gk−1} be the canonical decomposition of D[k](G) . Let γ
be a spanning cycle of G , vw be an edge of γ and γ′ be the path obtained by γ
removing the edge vw . Let γ′i be the corresponding path in Gi , for i = 0, 1, . . . , k−1 .
Then γ′0 ∪ {(w, 0), (v, 1)} ∪ γ′1 ∪ {(w, 1), (v, 2)} ∪ · · · ∪ γ′k−1{(w, k − 1), (v, 0)} is a
spanning cycle of D[k](G). �

Proposition 9. For any graph G1 and G2 the following properties hold:
(1) D[k](G1 ×G2) = G1 ×D[k](G2) = D[k](G1)×G2

(2) D[k](G1 ◦G2) = G1 ◦ D[k](G2) .

Proof. The first identity comes from the definition of k-fold graphs and (G1×G2)×Tk =
G1×(G2×Tk) , while the second one comes from (G1◦G2)◦Nk = G1◦(G2◦Nk) . �

Let Jk be the matrix of all ones of order k. From the definition it follows immediately
that

Proposition 10. Let A be the adjacency matrix of G . Then the adjacency matrix of
D[k](G) is

D[k][A] =


A A . . . A
A A . . . A
. . .
A A . . . A

 = A⊗ Jk.
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The rank r(G) of a graph G is the rank of its adjacency matrix. Then from the above
proposition it follows that

Proposition 11. For any graph G, r(D[k](G)) = r(G) .

In the sequel we will use the property that two graphs are isomorphic if and only if their
adjacency matrices are similar by means of a permutation matrix.

Let G1 and G2 be two graphs. The sum G1 + G2 of G1 and G2 is the disjoint
union of the two graphs. The complete sum G1 � G2 of G1 and G2 is the graph
obtained by G1 + G2 joining every vertex of G1 to every vertex of G2 . A graph is
decomposable if it can be expressed as sums and complete sums of isolated vertices [6,
p.183].

Proposition 12. For any graph G1 and G2 the following properties hold:
(1) D[k](G1 +G2) = D[k](G1) +D[k](G2)
(2) D[k](G1 �G2) = D[k](G1) �D[k](G2)
(3) The k-fold of a decomposable graph is decomposable.

Proof. The first two properties can be proved simultaneously as follows. Let A1 and

A2 be the adjacency matrices of G1 and G2 , respectively. Then
[
A1 X
X A2

]
is the

adjacency matrix of G1 + G2 when X = O and of G1 � G2 when X is the matrix
J all of whose entries are 1’s. Then the adjacency matrix of the k-fold graph is[

A1 X
X A2

]
⊗ Jk.

Interchanging first the columns in even positions with those in odd positions and simi-
larly for the rows, we obtain the matrix[

A1 ⊗ Jk X ⊗ Jk

X ⊗ Jk A2 ⊗ Jk

]
which is the adjacency matrix of D[k](G1) +D[k](G2) when X = O and of D[G1] �
D[G2] when X = J . These properties are also implied by the right-distributive laws of
the lexicographic product [5, pp. 185-186]. Finally the third property follows from the fact
that D[k] preserves sums and complete sums and D[k](K1) = Nk = K1 +K1 + · · · +
K1 . �

Examples
(1) If Nn is the graph on n vertices without edges, then D[k](Nn) = Nkn , while
Dk(Nn) = N2k.n.

(2) Let Km,n be a complete bipartite graph. Then D[k](Km,n) = Kkm,kn . Simi-
larly, if Km1,...,mn is a complete n-partite graph we have D[k](Km1,...,mn) =
Kkm1,...,kmn . In particular, if Km(n) is the complete m-partite graph Kn,...,n ,
then D[k](Km(n)) = Km(kn) . Since Kn = Kn(1) it follows that the k-fold of
the complete graph Kn is the graph H

[k]
n = Kn(k) , which turns out to be a

generalization of the hyperoctahedral graph.
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(3) For n ≥ 2 , let K−n be the graph obtained by the complete graph Kn deleting
any edge. Then K−n = N2�Kn−2 and D[k](K−n ) = D[k](N2)�D[k](Kn−2) =
N2k �H

[k]
n−2 , that is D[k](K−n ) = K2k,k,...,k .

A graph G is circulant when its adjacency matrix A is circulant, i.e. when every row
distinct from the first one, is obtained from the preceding one by shifting every element
one position to the right. Let C(a1, . . . , an) be the circulant graph where (a1, . . . , an)
is the first row of the adjacency matrix (for a suitable ordering of the vertices).

Proposition 13. A graph G is circulant if and only if D[k](G) is circulant. Specifically

D[k](C(a1, . . . , an)) = C(a1, . . . , an, a1, . . . , an, . . . , a1, . . . , an) .

Let R[G] = G×K2 be the canonical double covering of G [7]. In a way similar to
the case of double graphs it is possible to prove the following proposition.

Proposition 14. D[k] and R commutes, that is D[k](R[G]) = R[D[k](G)] for every
graph G .

3. Spectral properties of k-fold graphs

The eigenvalues, the characteristic polynomial and the spectrum of a graph are the
eigenvalues, the characteristic polynomial and the spectrum of its adjacency matrix [3, p.
12].

Proposition 15. The characteristic polynomial of the k - fold of a graph G on n vertices
is

ϕ(D[k](G);λ) = (kλk−1)n ϕ(G;λ/k).

In particular the spectrum of D[k](G) is {0, . . . , 0, kλ1, . . . , kλn}, where λ1, . . . , λn

are the eigenvalues of G and 0 is taken (k − 1)n times.

Proof. By Proposition 10 it follows that

ϕ(D[k](G);λ) =

∣∣∣∣∣∣∣∣
λI −A −A . . . −A
−A λI −A . . . −A
. . .
−A −A . . . λI −A

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
λI − kA −A . . . −A
λI − kA λI −A . . . −A
. . .

λI − kA −A . . . λI −A

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
λI − kA −A . . . −A

0 λI . . . 0
. . .
0 0 . . . λI

∣∣∣∣∣∣∣∣ .
�

An integral graph is a graph all of whose eigenvalues are integers [3, p. 266].

Proposition 16. A graph G is integral if and only if D[k](G) is an integral graph.

Proof. Since the characteristic polynomial of a graph is monic with integer coefficients its
rational roots are necessarily integers. Then the claim immediately follows from Proposi-
tion 15. �
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Two graphs are cospectral when they are non-isomorphic and have the same spectrum
[2], [3]. From Proposition 15 and Theorem 4 we have the following property.

Proposition 17. Two graphs G1 and G2 are cospectral if and only if D[k][G1] and
D[k][G2] are cospectral.

Therefore given two cospectral graphs G1 and G2 , it is always possible to construct
an infinite sequence of cospectral graphs. Indeed D[k](G1) and D[k](G2) are cospectral
for every k ∈ N .

The relation between the spectrum of a graph G and its k-fold graph has a consequence
for the strongly regular graphs. First recall that a graph G is d-regular if every vertex has
degree d ; then a graph G is d-regular if and only if D[k][G] is kd-regular.

A simple graph G is strongly regular with parameters (n, d, λ, µ) when it has n
vertices, is d-regular, every adjacent pair of vertices has λ common neighbors and every
nonadjacent pair has µ common neighbors.[8]

Connected strongly regular graphs, distinct from the complete graph, are characterized
[3, p. 103] as the connected regular graphs with exactly three distinct eigenvalues.

Strongly regular graphs with one zero eigenvalue are characterized as follows [3, p.
163]: a regular graph G has eigenvalues k , 0 , λ3 if and only if the complement of
G is the sum of 1− k/λ3 complete graphs of order −λ3 . Equivalently, a regular graph
has three distinct eigenvalues of which one is zero if and only if it is a multipartite graph
Km(n) .

We are able now to characterize the strongly regular k-fold graphs in the following
proposition proved in a perfectly similar way as in the case of the double graphs.

Proposition 18. For any graph G the following characterizations hold.

(1) D[k](G) is a connected strongly regular graph if and only if G is a complete
multipartite graph Km(kn) .

(2) D[k](G) is a disconnected strongly regular graph if and only if G is a completely
disconnected graph Nkn .

Moreover, since complete bipartite graphs are characterized by their spectrum, we have
that

Proposition 19. Strongly regular k-fold graphs are characterized by their spectrum.

4. Complexity and Laplacian spectrum

Let t(G) be the complexity of the graph G , i.e. the number of its spanning trees.
It is well known [9] that

(1) t(G) =
1
n2

det(L+ J)

where n is the number of vertices of G , L is the Laplacian matrix of G and J , as
before, is the n× n matrix all of whose entries are equal to 1 .

Theorem 20. The complexity of the k-fold of a graph G on n vertices with degrees
d1, d2, . . . , dn is
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(2) t(D[k](G)) = kkn−2 dk−1
1 dk−1

2 · · · dk−1
n t(G) .

Proof. Let v1, . . . , vn be the vertices of G and d1, . . . , dn their degrees. As known
the Laplacian matrix L of G is equal to D − A where D is the diagonal matrix
diag(d1, . . . , dn) and A is the adjacency matrix of G . Then the Laplacian matrix of
D[k](G) is

(3) D[k](L) = D[k](D)−D[k](A) =


kD O . . . 0
O kD . . . 0
. . .
0 0 . . . kD

−
A A . . . A
A A . . . A
A A . . . A

 ,
then

(4) D[k](L) =


kD −A −A . . . −A
−A kD −A . . . −A
. . .
−A −A . . . kD −A

 .
Hence it follows that

(5)

t(D[k](G)) =
1

(kn)2
.det(D[k](L)+J) =

1
(kn)2

.det


kD −A+ J −A+ J . . . −A+ J
−A+ J kD −A+ J . . . −A+ J
. . .

−A+ J −A+ J . . . kD −A+ J

 .
Summing to the first the remaining columns, we have

(6) t(D[k](G)) =
1

(kn)2


kD − kA+ kJ −A+ J . . . −A+ J
kD − kA+ kJ kD −A+ J . . . −A+ J

. . .
kD − kA+ kJ −A+ J . . . kD −A+ J



(7) =
1

(kn)2


kD − kA+ kJ −A+ J . . . −A+ J

0 kD . . . 0
. . .
0 0 . . . kD

 .
Then

t(D[k](G)) =
1

(kn)2
|kD−kA+kJ |·|kD|k−1 = knk−2 t(G).(d1)k−1.(d2)k−1 . . . (dn)k−1

and the theorem follows. �

As an immediate consequence we have the following

Theorem 21. The complexity of the double of a d-regular graph G on n vertices is

(8) t(D[k](G)) = knk−2.t(G).dn(k−1) .
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Finally, from (5), it can be proved the following

Proposition 22. Let G be a graph on n vertices with degrees d1, d2, . . . , dn and let
{λ1, . . . , λn} be its Laplacian spectrum. Then the Laplacian spectrum of D[k](G) is
{kd1 , · · · , kdn , kλ1, . . . , kλn} . In particular, G has an integral Laplacian spectrum if
and only if the same hold for D[k](G) .

5. Independent sets

An independent set of vertices of a graph G is a set of vertices in which no pair of
vertices is adjacent. Let Ih[G] be the set of all independent subsets of size h of G and
let ih(G) be its size. The independence polynomial of G is defined as

I(G;x) =
∑
h≥0

∑
S∈Ih[G]

x|S| =
∑
h≥0

ih(G) xh.

Proposition 23. For any graph G we have Ih[D[k](G)] ' Ih[G] × kh , where
k = {0, 1, · · · , k − 1} . In particular ih(D[k](G)) = khih(G) and I(D[k](G);x) =
I(G, kx) .

Proof. Let the vertices of G be linearly ordered in some way. Let S = {(v1, w1), . . . , (vh, wh)}
be an independent set of D[k](G) = G × Tk . Since Tk is a total graph, it follows that
π1(S) = {v1, . . . , vh} is an arbitrary independent subset of G and π2(S) is equivalent
to an arbitrary sequence (w1, . . . , wh) of length h (where the order is established by the
order of π1(S) induced by the order of V (G) ). The claim follows. �

The (vertex) independence number α(G) of a graph G is the maximum size of the
independent sets of vertices of G . Equivalently, α(G) is the degree of the polynomial
I(G, x) . Then Proposition 23 implies the following

Proposition 24. For any graph G we have that α(D[k](G)) = kα(G) .

6. Morphisms

A morphism f : G → H between two graphs G and H is a function from the
vertices of G to the vertices of H which preserves adjacency (i.e. v adj w implies
f(v) adj f(w) , for every v, w ∈ V (G) ) [10, 11]. An isomorphism between two graphs
is a bijective morphism whose inverse function is also a morphism.

Let Hom(G,H) be the set of all morphisms between G and H and let kV [G] be
the set of all functions from V (G) to k = {0, 1, · · · , k − 1} .

Lemma 25. For every graph G and H , Hom(G,D[k](H)) = Hom(G,H)× kV [G] .

Proof. From the universal property of the direct product (in the categorical sense [12]) we
have Hom(G,G1 ×G2) = Hom(G,G1)×Hom(G,G2) . Since D[k](G) = G× Tk

and Hom(G,Tk) = kV [G] , the lemma follows. �

We now extend D[k] to morphisms in the following way: for any graph morphism f :
G→ H let D[k][f ] : D[k](G)→ D[k](H) be the morphism defined by D[k][f ](v, k) =
(f(v), k) for every (v, k) ∈ D[G] . In this way D[k] is an endofunctor of the category
of finite simple graphs and graph morphisms.
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A morphism r : G→ H between two graphs G and H is a retraction if there exists
a morphism s : H → G such that r ◦ s = 1H . If there exists a retraction r : G → H
then H is a retract of G . Since D[k] is a functor it preserves retractions and retracts.

Proposition 26. Every graph G is a retract of D[k](G). More generally every retract of
G is also a retract of D[k](G) .

Proof. Consider the morphisms r : D[k](G) → G and s : G → D[k](G) defined by
r(v, k) = v for every (v, k) ∈ V (D[k](G)) and s(v) = (v, 0) for every v ∈ V (G) .
Then r , which is the projection of G× Tk on G , is a retraction. The second part of the
proposition follows from the fact that D[k] is a functor and the composition of retractions
is a retraction. �
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[5] W. Imrich, S. Klavžar, Product graphs (Wiley-Interscience, New York, 2000)
[6] R. Merris, Graph Theory (Wiley-Interscience, New York, 2001)
[7] L. Porcu, “Sul raddoppio di un grafo”, Istituto Lombardo (Rend. Sc.) A 110, 453 (1976)
[8] P. Cameron, “Strongly regular graphs,” in Topics in Algebraic Graph Theory, edited by L. W. Beineke and

R. J. Wilson (Cambridge Univ. Press., Cambridge, 2004)
[9] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory (Cambridge Univ. Press, Cambridge, 1991)

[10] G. Hahn, C. Tardif, “Graph homomorphisms: structure and symmetry, in Graph Symmetry, edited by G.
Hahn and G. Sabidussi (Kluver, 1997)

[11] P. Hell, J. Nesetril, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004)
[12] T. S. Blyth, Categories (Longman, Harlow, 1986)

[a] Maria Corinna Marino
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