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ABSTRACT. In this paper we study the graphs which are direct product of a simple graph
G with the graphs obtained by the complete graph K, adding a loop to each vertex; thus
these graphs turn out to be a generalization of the double graphs.

1. Introduction

Let G be a finite simple graph, i.e. a graph without loops and multiple edges. In [1]
it is introduced and studied the graph, said double of G and denoted D(G), obtained by
taking two copies of G and joining every vertex v in one component to every vertex w’ in
the other component corresponding to a vertex w adjacent to v in the first component. The
above construction can be generalized in the following way.

Asusual V(G) and E(G) denote the set of vertices and edges of G, respectively,
and adj denote the adjacency relation of G. For all definitions not given here see
[2,3,4,5,6].

The direct product G x H of two graphs G and H is the graph with V(G x H) =
V(G) x V(H) and with adjacency defined by (vi,w;) adj (ve,ws) if and only if
v1 adj vy in G and w; adj we in H .[5]

The fotal graph T, on n vertices is the graph associated to the total relation (where
every vertex is adjacent to every vertex). It can be obtained by the complete graph K,
adding a loop to every vertex. In [5] it is denoted by K .

We define the k- fold of G as the graph D] (@) = G x Ty; clearly for k = 2 we obtain
the double graphs.

Since the direct product of a simple graph with any graph is always a simple graph, it
follows that the k-fold of a simple graph is still a simple graph.

In D*(G) we have (v,a) adj (w,b) if and only if v adj w in G. Then, if
V(Tx) ={0,1,...,k — 1}, we have that G; = {(v,i) : ve V(G)},0<i<k-1,
are k subgraphs of D*(G) isomorphicto G suchthat GoNG1N---NGj_1 = @ and
GoUG, U---UGy_1 is a spanning subgraph of DI*! (G) . Moreover we have an edge
between (v,i) and (w,j) and similarly we have an edge between (v,j) and (w,3) ,
where 0 < 4,5 < k — 1, whenever v adj w in G. We will call {Gy,G1,...,Gr_1}
the canonical decomposition of DF(Q) .

The lexicographic product (or composition) of two graphs G and H is the graph G o
H with V(G)xV (H) as vertex set and with adjacency defined by (vi,w;) adj (ve,ws)
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if and only if v; = vy and w; adj we in H or v; adj ve in G. The graph G o H
can be obtained from G replacing each vertex v of G by acopy H, of H and
joining every vertex of H, with every vertex of H,, whenever v and w are adjacent
in G [5,p. 185].

Lemma 1. For any graph G we have G xT,, ~ G o N,,, where N,, isthe graphon n
vertices without edges.

Proof. For simplicity consider 7,, and N,, on the same vertex set. Then the function
f:GxT,— GoN,,definedby f(v,k)=(v,k) forevery (v,k) € V(G xT,),isa
graph isomorphism. Indeed, since N,, has no edges, we have that (v, h) adj (w,k) in
GoN, ifandonlyif v adj w in G. 0

2. Some basic properties of k-fold graphs

In this section we will review some elementary properties of the k-fold graphs. We
will write. D?[G] for the double of the double of G . More generally D*(G) is obtained
by multiplying G by Ty k times, ti. D*(G) = G x Ty and D*(G) # D*(@G)

In particular DI¥1(G) ~ D™(G) when k = 2™. In the following proposition the
converse statement is proved.

Proposition 2. Let k and m positive integers. Then DFI(G) ~ D™(Q) if and only if
k=2m

Proof. We prove the “only if” part. Let n be the number of vertices of G. The assump-
tion that DIFI(G) ~ D™(G) implies | V(D¥(G)) |=| V(D™(G)) |. Thus, because
| V(DF(@)) |= kn and | V(D™ (G)) |= 2"n, the result follows. O

Recall the following theorem.

Theorem 3 ([5, p. 190]). If Go H ~ G' o H' and |V(H)| = |V(H)
and G~ G .

,then H~ H'

An immediate consequence of the theorem is the following

Theorem 4. Two graphs Gy and Gy are isomorphic if and only if D¥(G1) and
DIF(Gy) are isomorphic.

Proof. By Lemma 1 D¥/(G}) = Gy o Ny, and DI*/(G5) = G5 o Ny; then the claim
holds. -

Proposition 5. The k-fold graph D*/(G) of a graph G on n vertices contains at least
(2™ — 2)(k — 1)k + k subgraphs isomorphic to G itself.

Proof. Let {Gy,G1,...,Gr_1} be the canonical decomposition of DIkl (G). Let Sy

be any subset of V(Gy) and Cp the complementary set of Sy with respect to V(Go);
moreover let S; , where 1 < i < k—1, besubsetsof V(G;) and C; their complementary
sets with respect to V' (G;) . Then the subsets S; UC; ,where 1 <1i,j < k—1,i# j,
are isomorphic to G. The number of subsets S is 2" — 2, because we exclude the cases of
So = @ and Sy = Gy; finally we have to add the & subsets Gy, G1,...,Gr_1. O

Proposition 6. For any graph G, G is bipartite if and only if DIFI(G) is bipartite.
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Proof. Let {Go,G1,...,Gr_1} be the canonical decomposition of DI*/(G). If G
is bipartite then also G, , where 0 < j < k — 1, are bipartite. Let {V,W} be the
partite sets of G and {Vj, W}, be the corresponding partite sets of G; . Every edge of
DIFI(G) has one extreme in U?;&Vj, and the other in U?;; W; and hence also D (G)
is bipartite.

Conversely, if DI*/(G) is bipartite then it does not contain odd cycles. Hence also the
subgraph Gy ~ G does not contain odd cycles and then it is bipartite. O

A vertex cut of a graph G is asubset S of V(G) suchthat G\ S is disconnected.
The connectivity k(G) of G is the smallest size of a vertex cut of G. A point of
articulation (resp. bridge) is a vertex (resp. edge) whose removal augment the number
of connected components. A block is a connected graph without articulation points. In
the following proposition we present some properties of the k-fold graphs, whose proof is
perfectly similar to the proof in the case of the double graphs [1].

Proposition 7. For any graph G # K; the following properties hold.

(1) G is connected if and only if D¥I(G) is connected.

(2) If G is connected, then every pair of vertices of DI¥] (G) belongs to a cycle.
(3) Every edge of D*(G) belongs to a 4-cycle.

(4) In a k-fold graph there are neither bridges nor articulation points.

(5) If G is connected, then DIFI(G) is a block.

(6) The connectivity of DFI(G) is x(DF(@)) = 2F K(G).

A graph G is Hamiltonian if it has a spanning cycle.
Proposition 8. Ifa graph G is Hamiltonian, then also D¥!(G) is Hamiltonian.

Proof. Let {Go,G1,...,Gr—1} be the canonical decomposition of D[’“](G). Let ~
be a spanning cycle of G, vw be an edge of v and 7’ be the path obtained by -y

removing the edge vw. Let v, be the corresponding pathin G;,for i =0,1,...,k—1.
Then ~5 U {(w,0), (v, 1)} Uyt U{(w, 1), (v,2)} U -+ Uy 4 {(w, k= 1),(v,0)} isa
spanning cycle of DIF(G). O

Proposition 9. For any graph G1 and G4 the following properties hold:
(1) DH(G, x Ga) = G1 x DH(Gy) = DIFI(Gy) x Gy
2) DGy 0 Gy) = G1 o DH(Gy).

Proof. The first identity comes from the definition of k-fold graphs and (G x G2) x T}, =
G1 X (G2 x Ty,) , while the second one comes from (G10G2)o N, = G1o(GaoNg). O

Let J;, be the matrix of all ones of order k. From the definition it follows immediately
that

Proposition 10. Let A be the adjacency matrix of G. Then the adjacency matrix of
DF(@Q) is
A A ... A
pHp = |4 A A ag

A A ... A
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The rank r(G) of a graph G is the rank of its adjacency matrix. Then from the above
proposition it follows that

Proposition 11. For any graph G, r(DF(G)) = #(G).

In the sequel we will use the property that two graphs are isomorphic if and only if their
adjacency matrices are similar by means of a permutation matrix.

Let G; and G5 be two graphs. The sum G + G, of G; and G5 is the disjoint
union of the two graphs. The complete sum G, B G2 of G; and Gy is the graph
obtained by G + G2 joining every vertex of (G to every vertex of Ga. A graph is
decomposable if it can be expressed as sums and complete sums of isolated vertices [6,
p.183].

Proposition 12. For any graph G1 and G the following properties hold:
(2) DH(G, B Gy) = DF(G,) BDH(G,)
(3) The k-fold of a decomposable graph is decomposable.

Proof. The first two properties can be proved simultaneously as follows. Let A; and

A, Dbe the adjacency matrices of G; and (s, respectively. Then is the

1
X A
adjacency matrix of G; + G2 when X = O and of G; HG> when X is the matrix
J all of whose entries are 1’s. Then the adjacency matrix of the k-fold graph is

A X
X A,

Interchanging first the columns in even positions with those in odd positions and simi-
larly for the rows, we obtain the matrix

AT, XQJ
X Ay®Ji

which is the adjacency matrix of DI¥I(G;) 4+ DI*/(G5) when X = O and of D[G,]H
D[G2] when X = J. These properties are also implied by the right-distributive laws of
the lexicographic product [5, pp. 185-186]. Finally the third property follows from the fact
that DI¥] preserves sums and complete sums and DK (K1) =Ny =K1+ Ky +--+
K. d

&

Examples

(1) If N, isthe graph on n vertices without edges, then DI (N,,) = N, , while
Dk(Nn) = N2k4n'

(2) Let K,,, beacomplete bipartite graph. Then DK (Km,n) = Kim kn . Simi-
larly, if K, ..m, isacomplete n-partite graph we have DIl (Kmy,..omn) =
Kim, ... km, - In particular, if Km(n) is the complete m-partite graph K,, ., ,
then DW(K,, () = Ky(n) - Since K, = K, (1) it follows that the k-fold of
the complete graph K, is the graph HT[Lk] = K, (x),» which turns out to be a
generalization of the hyperoctahedral graph.
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(3) For n > 2,let K be the graph obtained by the complete graph K, deleting
any edge. Then K, = N,BK,_, and D¥(K ) = DF(N,)BDH (K, _5) =
Ny BHM, thatis DF(KT) = Kopgo.. -

A graph G is circulant when its adjacency matrix A is circulant, i.e. when every row
distinct from the first one, is obtained from the preceding one by shifting every element
one position to the right. Let C(aq,...,a,) be the circulant graph where (aq,...,a,)
is the first row of the adjacency matrix (for a suitable ordering of the vertices).

Proposition 13. A graph G is circulant if and only if D¥(Q) is circulant. Specifically
D[k](C’(al,...,an)) =C(A1y ey Oy ALy e ey Ay e ALy ey Ay)

Let R[G] = G x K5 be the canonical double covering of G [7]. In a way similar to
the case of double graphs it is possible to prove the following proposition.

Proposition 14. D* and R commutes, that is DF(R[G]) = R[DHF(G)] for every
graph G.

3. Spectral properties of k-fold graphs

The eigenvalues, the characteristic polynomial and the spectrum of a graph are the
eigenvalues, the characteristic polynomial and the spectrum of its adjacency matrix [3, p.
12].

Proposition 15. The characteristic polynomial of the k - fold of a graph G on n vertices
is

p(DM(G):A) = (BX1)" 0(G; M)
In particular the spectrum of DF(G) is {0,...,0,kX1,... kX, }, where Ai,..., A\,
are the eigenvalues of G and 0 is taken (k — 1)n times.

Proof. By Proposition 10 it follows that

M—-A A o Al M —kA L -A
oM@y = | A M—A Al M —kA A4
A -A -4 M-kA  —A .. A -A
M—kA —A ... —A
0 a0
00 .. A

An integral graph is a graph all of whose eigenvalues are integers [3, p. 266].
Proposition 16. A graph G is integral if and only if D¥(G) is an integral graph.

Proof. Since the characteristic polynomial of a graph is monic with integer coefficients its
rational roots are necessarily integers. Then the claim immediately follows from Proposi-
tion 15. 0
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Two graphs are cospectral when they are non-isomorphic and have the same spectrum
[2], [3]. From Proposition 15 and Theorem 4 we have the following property.

Proposition 17. Two graphs G, and Gy are cospectral if and only if D¥[G1] and
DF[Gy] are cospectral.

Therefore given two cospectral graphs G; and (s, it is always possible to construct
an infinite sequence of cospectral graphs. Indeed D*1(G) and D (Gy) are cospectral
forevery k € N.

The relation between the spectrum of a graph G and its k-fold graph has a consequence
for the strongly regular graphs. First recall that a graph G is d-regular if every vertex has
degree d;thena graph G is d-regular if and only if D¥I[G] is kd-regular.

A simple graph G is strongly regular with parameters (n,d, A, u) when it has n
vertices, is d-regular, every adjacent pair of vertices has A common neighbors and every
nonadjacent pair has ;2 common neighbors.[8]

Connected strongly regular graphs, distinct from the complete graph, are characterized
[3, p. 103] as the connected regular graphs with exactly three distinct eigenvalues.

Strongly regular graphs with one zero eigenvalue are characterized as follows [3, p.
163]: aregular graph G has eigenvalues k£, 0, A3 if and only if the complement of
G isthe sumof 1 — k/\3 complete graphs of order — A3 . Equivalently, a regular graph
has three distinct eigenvalues of which one is zero if and only if it is a multipartite graph
K m(n) *

We are able now to characterize the strongly regular k-fold graphs in the following
proposition proved in a perfectly similar way as in the case of the double graphs.

Proposition 18. For any graph G the following characterizations hold.

(1) DI (G) is a connected strongly regular graph if and only if G is a complete
multipartite graph K, (i) -

(2) DI (GQ) is a disconnected strongly regular graph if and only if G is a completely
disconnected graph N, .

Moreover, since complete bipartite graphs are characterized by their spectrum, we have
that

Proposition 19. Strongly regular k-fold graphs are characterized by their spectrum.

4. Complexity and Laplacian spectrum

Let t(G) be the complexity of the graph G, i.e. the number of its spanning trees.
It is well known [9] that

0 HE) = %det(L—k J)

where n is the number of vertices of G, L is the Laplacian matrix of G and J, as
before, is the m X n matrix all of whose entries are equal to 1.

Theorem 20. The complexity of the k-fold of a graph G on n vertices with degrees
dl, dg, vy dn is
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2) t(D*N(@)) = kFn=2dh =1 dh=t . dk (@)
Proof. Let vy,...,v, be the vertices of G and di,...,d, their degrees. As known
the Laplacian matrix L of G isequalto D — A where D is the diagonal matrix
diag(dy,...,d,) and A is the adjacency matrix of G. Then the Laplacian matrix of
DIE(G) is
o Cloraa . oa
3) DH¥(L) =DM (D) - DH(4) = - 1A A4 ... A|,
0 0 kD A A A
then
kD — A —A —A
@) DIk] (L) = —A kD — A —A
—A —A kD — A

Hence it follows that

&)
kD—A+J —A+J
1 1 —A+J kD —A+J
(K] = K] -
t(D"(@)) on)? det(D"™(L)+J) e det
-A+J —A+J
Summing to the first the remaining columns, we have
kD — kA+kJ —A+J —A+J
1 kD —kA+kJ kD—-A+J ... —A+J
6 t(DM(@)) =
© 1Y) = o
kD — kA+kJ —A+J ... kD—A+J
kD —kA+kJ —-A+J ... —-A+J
1 0 kD 0
0 0 kD
Then
1
t(PH(@)) = T2 |kD—kA+kJ|-|kD|F~! = k™72 1(@).(dy)* . (do) "L .. (dy,) P
and the theorem follows. d

As an immediate consequence we have the following

Theorem 21. The complexity of the double of a d-regular graph G on n vertices is
®) t(D*(@)) = k™F2.4(G).d" Y

—-A+J
—-A+J

kD —A+J
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Finally, from (5), it can be proved the following

Proposition 22. Let G be a graph on n vertices with degrees di,ds,...,d, and let
{A1,...,A\n} be its Laplacian spectrum. Then the Laplacian spectrum of yalll (G) is
{kdy , -+ kdy ,kX1,...,k\.}. In particular, G has an integral Laplacian spectrum if

and only if the same hold for D¥1(G).

5. Independent sets

An independent set of vertices of a graph G is a set of vertices in which no pair of
vertices is adjacent. Let Zj,[G] be the set of all independent subsets of size h of G and
let i, (G) be its size. The independence polynomial of G is defined as

I(G;x)zz Z xlsl:Zih(G)xh.

h>0 S€T;[G] h20

Proposition 23. For any graph G we have T,[DF(G)] ~ TI,[G] x k", where
k = {0,1,--- ,k — 1}. In particular i,(D*(Q)) = ki, (G) and I(D¥(G);z) =
I(G,kz).

Proof. Letthe vertices of G be linearly ordered in some way. Let S = {(v1,w1), ..., (vp, wp)}
be an independent set of DI*/(G) = G x T}, . Since T}, is a total graph, it follows that
m1(S) = {v1,...,vp} is an arbitrary independent subset of G and m2(S) is equivalent
to an arbitrary sequence (wq,...,wy) of length h (where the order is established by the
order of 71(S) induced by the order of V(G)). The claim follows. O

The (vertex) independence number «(G) of a graph G is the maximum size of the
independent sets of vertices of G . Equivalently, «(G) is the degree of the polynomial
I(G,x) . Then Proposition 23 implies the following

Proposition 24. For any graph G we have that o(D¥(G)) = ka(G).

6. Morphisms

A morphism f : G — H between two graphs G and H is a function from the
vertices of G to the vertices of H which preserves adjacency (i.e. v adj w implies
f(v) adj f(w), forevery v,w € V(G)) [10, 11]. An isomorphism between two graphs
is a bijective morphism whose inverse function is also a morphism.

Let Hom(G, H) be the set of all morphisms between G and H and let k"I be
the set of all functions from V(G) to k={0,1,--- ,k —1}.

Lemma 25. For every graph G and H, Hom(G,D*(H)) = Hom(G, H) x kVI¢],
Proof. From the universal property of the direct product (in the categorical sense [12]) we

have Hom(G, G, x G3) = Hom(G, G;) x Hom(G,G53). Since D*(G) = G x T},
and Hom(G, T}) = kY[, the lemma follows. O

We now extend D!¥! to morphisms in the following way: for any graph morphism f :
G — H let DH¥[f]: D¥(G) — DIFI(H) be the morphism defined by D[ f](v, k) =
(f(v),k) forevery (v,k) € D[G]. In this way DI*] is an endofunctor of the category
of finite simple graphs and graph morphisms.
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A morphism 7 : G — H between two graphs G and H is a retraction if there exists
amorphism s: H — G suchthat r o s = 1. If there exists a retraction 7 : G — H
then H is a retract of G . Since DI¥! is a functor it preserves retractions and retracts.

Proposition 26. Every graph G is a retract of DFI(G). More generally every retract of
G is also a retract of D*(G).

Proof. Consider the morphisms 7 : DIFI(G) — G and s : G — DFI(G) defined by
r(v,k) = v forevery (v,k) € V(DH(G)) and s(v) = (v,0) forevery v € V(G).
Then 7, which is the projection of G x T}, on G, is a retraction. The second part of the
proposition follows from the fact that D*! is a functor and the composition of retractions
is a retraction. 0
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